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Abstract

We characterise the strong- and weak-type boundedness of the geometric fractional maximal operator
between weighted Lebesgue spaces in the case 0 < p ≤ q <∞, generalising and improving some older
results.
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1. Introduction

The purpose of this paper is to prove necessary and sufficient conditions on the weights
for which the geometric fractional maximal operator of order α ∈ [0, n),

Gα f (x) = sup
Q∈Cx

|Q|α/n exp
( 1
|Q|

∫
Q

log | f (y)| dy
)

= sup
Q∈Cx

lim
γ→0+

|Q|α/n
( 1
|Q|

∫
Q
| f (y)|γ dy

)1/γ

,

satisfies the two-weight strong-type or weak-type (Lp(v), Lq(u)) estimates. Here,
Cx denotes the family of all cubes Q ⊂ Rn containing x, and f is a measurable function
on Rn. The sides of the cubes in Cx are assumed to be parallel to the coordinate axes.
For r > 0, rQ will denote the cube with centre that of Q and diameter r times that
of Q.

The operator Gα is a submultiplicative analogue of the usual fractional maximal
operator of order α,

Mα f (x) = sup
Q∈Cx

|Q|α/n−1
∫

Q
| f (y)| dy,
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which in turn is a generalisation of the classical Hardy–Littlewood maximal operator,

M f (x) = sup
Q∈Cx

1
|Q|

∫
Q

f (y) dy.

Weighted norm inequalities for the maximal and the fractional maximal operator
have been extensively studied (see, for example, [4, 5, 7] and the references therein),
while their submultiplicative analogues have come to attention more recently. See, for
example, [1–3, 9] for results and historical facts.

By Jensen’s inequality,
Gα f (x) ≤ Mα f (x)

and strict inequalities are possible. Another simple but useful property of the geometric
fractional maximal operator is

Gα+β f g ≤Gα f Gβg for α, β ≥ 0, α + β < n.

If α = β = 0, the above relation expresses the submultiplicativity of the geometric
maximal operator. We also have Gαa f p = a(Gα/p f ), a ∈ R, p > 0.

In this paper we are interested in the action of Gα on weighted Lebesgue spaces.
By a weight we will mean any function which is locally integrable and positive on Rn.
Given a weight u and an exponent p > 0 the symbols Lp(u) and Lp,∞(u) will denote the
classical weighted strong- and weak-type Lebesgue spaces on Rn with the Lebesgue
measure, with the usual modification if p =∞. If E is a Lebesgue measurable subset
of Rn then |E| will denote the Lebesgue measure of E. The letter C will be used to
denote a positive constant not necessarily the same at each occurrence.

In Section 2 we characterise the two-weight strong-type inequality for the geometric
fractional maximal operator Gα. The special case n = 1, α = 0, p = q was completely
characterised in [9]. The case n > 1, α = 0, p = q was considered in [1] but
some restrictive conditions were a priori assumed on the weight on the right-hand
side. The technique used there was to treat the geometrical operator as a limit of
minimal operators. The complete characterisation of the strong-type inequality for the
geometrical fractional maximal operator (that is, α , 0) in the one-dimensional case
n = 1, 0 < p ≤ q <∞ was given in [3]. Using techniques of more classical character
(see, for example, [4]) we extend the previous results to the case n > 1, α , 0 and
0 < p ≤ q <∞.Although we also assume an extra condition on the weight on the right-
hand side, it seems to be easier to verify than that imposed in [1]. In the diagonal case,
that is, when the weights are equal, we show that the a priori condition is redundant
(see Corollary 2.4).

In Section 3 we characterise (assuming only the doubling condition on the weight
on the left-hand side) the corresponding two-weight weak-type inequality for the
geometric fractional maximal operator Gα, for n > 1, α , 0, 0 < p ≤ q <∞. This
result extends to the multidimensional case the corresponding results proved in [3,
Theorem 1] and [9, Theorem 2]. The case α = 0, n > 1, p = q was considered
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in [1] where more complicated conditions were assumed on the weights. In the one-
weighted case we do not have to assume any a priori conditions on the weights (see
Corollary 3.4). In this way we answer an open question posed in [1].

2. Strong-type weighted inequalities

The aim of this section is to prove necessary and sufficient conditions under which
the two-weight norm inequality for the geometric fractional maximal operator holds
true, that is, Gα : Lp(v)→ Lq(u). The proof of our main result is based on the following
lemma.

L 2.1. Let v be a weight function with a positive lower bound, Q ⊂ Rn a cube with
sides parallel to the coordinate axes and α ≥ 0. Suppose that f is a positive, bounded
function with compact support such that

|Q|α/n exp
( 1
|Q|

∫
Q

log f (x) dx
)
> t, t > 0.

Then there exists a dyadic cube P (which intersects Q) such that( 1
|P|

∫
P

f (x)v1/p(x) dx
)(
|Q|α/n exp

( 1
|Q|

∫
Q

log v−1/p(x) dx
))
>

1
22n

t, t > 0.

P. The restrictions on f and v ensure that a general equality of the form

exp
(∫

Q
log | f |

)
= exp

(∫
Q

log | f |h
)

exp
(∫

Q
log

1
h

)
holds (see for example [9, Theorem 1]). Let k ∈ Z such that 2(k−1)n ≤ |Q| < 2kn. Then
there exist P1, . . . , PN (1 < N ≤ 2n), dyadic cubes of generation 2k which intersect Q,
such that Q ⊂

⋃N
j=1 P j. Clearly, Q ⊂ 3P j for any j. There exists at least one dyadic

cube P (among P1, . . . , PN) such that( 1
|Q|

∫
P

f (x)v1/p(x) dx
)(
|Q|α/n exp

( 1
|Q|

∫
Q

log v−1/p(x) dx
))
>

1
2n

t, t > 0. (2.1)

If this is not true, then, by Jensen’s inequality,

|Q|α/n exp
( 1
|Q|

∫
Q

log f (x) dx
)

≤

( 1
|Q|

∫
Q

f (x)v1/p(x) dx
)(
|Q|α/n exp

( 1
|Q|

∫
Q

log v−1/p(x) dx
))

≤

( 1
|Q|

N∑
j=1

∫
P j

f (x)v1/p(x) dx
)(
|Q|α/n exp

( 1
|Q|

∫
Q

log v−1/p(x) dx
))

≤
Nt
2n
≤ t,
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which contradicts the hypothesis (2.1). Hence, by (2.1),( 1
|P|

∫
P

f (x)v1/p(x) dx
)(
|Q|α/n exp

( 1
|Q|

∫
Q

log v−1/p(x) dx
))

=
|Q|
|P|

( 1
|Q|

∫
P

f (x)v1/p(x) dx
)(
|Q|α/n exp

( 1
|Q|

∫
Q

log v−1/p(x) dx
))
>

1
22n

t,

and this completes the proof. �

The following theorem, which is the main result of this section, characterises the
strong boundedness of the geometrical fractional maximal operator.

T 2.2. Let 0 < p ≤ q <∞, 0 ≤ α < n and P be a dyadic cube. Suppose that

1
|3P|

∫
3P

log v(x) dx ≤
1
|Q|

∫
Q

log Kv(x) dx (2.2)

for some K > 0 and any cube Q ⊂ 3P which intersects P and such that (1/2n)|P| ≤
|Q| < |P|. Then there exists a constant C such that the inequality(∫

Rn
(Gα| f (x)|)q u(x) dx

)1/q

≤C
(∫
Rn
| f |p(x)v(x) dx

)1/p

(2.3)

holds for all f ∈ Lp(v) if and only if there exists a constant C such that,(∫
Q

(Gαp(χQv−1))q/p u(x) dx
)1/q

<C|Q|1/p (2.4)

for every cube Q ⊂ Rn with sides parallel to the coordinate axes.

P. The necessity part follows from (2.3), applied to f = χQv−1/p.
The rest of the proof will concern the sufficiency of the condition (2.4) for the norm

inequality (2.3) to hold. We may assume, by standard arguments, that f ∈ Lp(v) is a
nonnegative function with compact support and that v has the lower bound 1 (see, for
example, [9]). Write

Ωk = {x ∈ Rn : 2k <Gα f (x) ≤ 2k+1}.

By the definition of Gα, for every k ∈ Z and every x ∈Ωk, there exists a cube Qk
x such

that

|Qk
x|
α/n exp

( 1

|Qk
x|

∫
Qk

x

log f (x) dx
)
> 2k.

By Lemma 2.1 we can find a dyadic cube Pk
x which intersects Qk

x, with Qk
x ⊂ 3Pk

x and
such that( 1

|Pk
x|

∫
Pk

x

f (x)v1/p(x) dx
)(
|Qk

x|
α/n exp

( 1

|Qk
x|

∫
Qk

x

log v−1/p(x) dx
))
>

1
22n

2k.
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This estimate and the fact that f ∈ Lp(v) yield that the dyadic cubes Pk
x have bounded

size, for every k. Hence there exists a sequence of maximal (and so disjoint) dyadic
cubes {Pk

j} j∈N such that every Qk
x ⊂ 3Pk

j, for some j ∈ N. As a consequence,

Ωk ⊂
⋃
j∈N

3Pk
j.

We now decompose Ωk in the standard way:

Ek
1 = 3Pk

1 ∩Ωk, Ek
2 = (3Pk

2 \ 3Pk
1) ∩Ωk, . . . , Ek

j =

(
3Pk

j

∖ j−1⋃
l=1

3Pk
l

)
∩Ωk, . . . .

The sets Ek
j are pairwise disjoint and Rn =

⋃
k∈Z Ωk =

⋃
j,k Ek

j . Fix L ∈ N and suppose
that |k| ≤ L. By Lemma 2.1 and (2.2), and since

exp
( 1

|Qk
x|

∫
Qk

x

log v−1/p(x) dx
)
< 1,

we obtain

IL :=
∫

⋃
|k|≤L Ωk

(Gα f (x))qu(x) dx

≤
∑

j,k

2(k+1)q
∫

Ek
j

u(x) dx

< C
∑

j,k

( 1

|Pk
j |

∫
Pk

j

f (x)v1/p(x) dx
)q(
|Qk

x|
qα/n exp

( q

|Qk
x|

∫
Qk

x

log v−1/p(x) dx
))

< C
∑

j,k

( 1

|Pk
j |

∫
Pk

j

f (x)v1/p(x) dx
)q

×

(
|3Pk

j |
qα/n exp

( q

|3Pk
j |

∫
3Pk

j

log v−1/p(x) dx
))(∫

Ek
j

u(x) dx
)

= C
∑

j,k

(TL( f v1/p)( j, k))qσ( j, k),

where

σ( j, k) =

(
|3Pk

j |
qα/n exp

( q

|3Pk
j |

∫
3Pk

j

log v−1/p(x) dx
))(∫

Ek
j

u(x) dx
)

and

TLh( j, k) =
1

|Pk
j |

∫
Pk

j

h, j ∈ N, k ∈ Z, |k| ≤ L.

It is obvious that TL is linear and bounded from L∞(Rn, dx) into L∞(N × Z, σ)
uniformly on L.
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Next, we will prove that TL is bounded from L1(Rn, dx) into Lq/p,∞(N × Z, σ)
independently of L. Let λ > 0. The dyadic cubes of the collection {Pk

j : TLh( j, k) > λ}
have bounded size, since |k| ≤ L and for every k, the cubes {Pk

j} have bounded size.
Hence we can extract a maximal subcollection {Pi}i such that for every ( j, k), with
TL( j, k) > λ, Pk

j ⊂ Pi, for some i. The pairwise disjointness of the sets Ek
j and the fact

that Ek
j ⊂ 3Pk

j give

∑
{( j,k):TLh>λ}

(
exp

( 1

|3Pk
j |

∫
3Pk

j

log v−1/p(x) dx
))q ∫

Ek
j

u(x) dx

≤
∑

{( j,k):TLh>λ}

∫
Ek

j

(G(v−1/pχ3Pk
j
))

q
u(x) dx

≤C
∑

i

∫
Pi

(G(v−1/pχ3Pi ))
q
u(x) dx.

By (2.4), the pairwise disjointness of the cubes {Pi}i and since p ≤ q, we get∑
i

∫
Pi

(G(v−1/pχ3Pi ))
q
u(x) dx ≤ C

∑
i

|3Pi|
q/p

< C3nq/p
(1
λ

∑
i

∫
Pi

h(x) dx
)q/p

< C
(1
λ

∫
⋃

i Pi

h(x) dx
)q/p

≤ C
(1
λ

∫
Rn

h(x) dx
)q/p

,

which means that TL is bounded from L1(Rn, dx) into Lq/p,∞(N × Z, σ) independently
of L. By the Marcienkiewich interpolation theorem we have that TL is bounded from
Lp(Rn, dx) into Lq(N × Z, σ), that is,

IL ≤C
∑

j,k

(TL( f v1/p)( j, k))σ( j, k) ≤C
(∫
Rn

f p(x)v(x) dx
)q/p

.

Since C does not depend on L we can let L→∞ and we get the desired inequality, and
this completes the proof of the theorem. �

D 2.3 [5]. A weight v on Rn is said to belong to the class A∞ if

exp
( 1
|Q|

∫
Q

log v(t) dt
)
≤C

1
|Q|

∫
Q

v(t) dt

for some C > 0 and any cube Q with sides parallel to the axes.
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The following corollary shows that in the diagonal case the extra condition of
Theorem 2.2 is actually not needed.

C 2.4. Let p > 0. The inequality(∫
Rn

(Gα| f (x)|)p v(x) dx
)1/p

≤C
(∫
Rn
| f |p(x)v(x) dx

)1/p

(2.5)

holds for all f ∈ Lp(v) and some C > 0 if and only v belongs to A∞.

P. Take p = q, α = 0 and u = v in Theorem 2.2. As proved in [9, p. 76], in this
case, condition (2.4) is equivalent to the condition A∞. Let P and Q ⊂ 3P be an
arbitrary cube which intersects P and such that (1/2n)|P| ≤ |Q| < |P|. Clearly P ⊂ 5Q.
Let v be a weight belonging to the class A∞. Since all weights which satisfy the A∞
condition are also doubling,

exp
( 1
|3P|

∫
3P

log v(x) dx
)
≤ C

1
|3P|

∫
3P

v(x) dx

≤ C
1
|Q|

∫
5Q

v(x) dx ≤C
1
|Q|

∫
Q

v(x) dx

≤ C exp
( 1
|Q|

∫
Q

log v(x) dx
)

= exp
( 1
|Q|

∫
Q

log Cv(x) dx
)
,

that is, condition (2.2) is satisfied. In this, we have also used Jensen’s inequality. The
constant C is obviously not the same at each occurrence. Hence (2.5) holds. The
converse of the corollary is trivial, and the proof is complete. �

For the case q =∞ we have the following proposition.

P 2.5. Let 0 ≤ α < n. The following inequality holds:

‖Gα f ‖L∞(v) ≤ ‖ f ‖Ln/α(v).

P. This is just a consequence of the fact that Gα ≤ Mα. If α = 0 the inequality is
trivial. For α > 0, the boundedness of Mα follows by Hölder’s inequality with exponent
n/α. �

R 2.6. If n = 1, p = q and α = 0 we get [9, Theorem 1] and if n = 1 we obtain [3,
Theorem 2]. For n > 1, p = q, and α = 0 we have [1, Theorem 1.5] with the observation
that our a priori condition seems easier to check. In this way we partially answer an
open question posed in [1, p. 5].

R 2.7. By the Lebesgue differentiation theorem, if 1/p − 1/q > α/n, inequal-
ity (2.3) cannot hold unless u ≡ 0 a.e. Therefore the only nontrivial case is when
1/p − 1/q ≤ α/n. For α = 0 this forces p = q.
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3. Weak-type weighted inequalities

In this section we study weak-type inequalities for the fractional geometric maximal
operator, that is, necessary and sufficient conditions for the weights u and v such that
Gα : Lp(v)→ Lq,∞(u). In order to prove the main theorem we need some technical
results. We start with a very simple and useful covering lemma.

L 3.1. Let {Q j} j∈J be an arbitrary family of cubes in Rn such that sup j∈J |Q j| <∞.
Then, from this family we can select a subsequence Q1, Q2, . . . , Qn, . . . (finite or
infinite) of disjoint cubes such that

⋃
j∈J Q j ⊆

⋃
j∈N 5Q j.

P. For the proof see [6, p. 10], �

L 3.2. Let α ∈ [0, n), 0 < p ≤ q <∞ and let Q ⊂ Rn be a cube. If∫
Q

u(x) dx ≤C
(
|Q|1−αp/n exp

( 1
|Q|

∫
Q

log v(x) dx
))q/p

,

then (
|Q|α/n exp

( 1
|Q|

∫
Q

log f (x) dx
))q ∫

Q
u(x) dx ≤C

(∫
Q

f p(x)v(x) dx
)q/p

for any measurable function f > 0.

P. We may suppose without loss of generality that f is bounded and compactly
supported and that v has a positive lower bound (see, for example, [9]). Let Q ⊂ Rn

be a cube. By elementary computations and the integral form of the arithmetic mean-
geometric mean inequality (see [8]),(

|Q|α/n exp
( 1
|Q|

∫
Q

log f (x) dy
))q

=

(
|Q|α/n exp

( 1
|Q|

∫
Q

log f (x)v1/p(x)v−1/p(x) dx
))q

= |Q|qα/n
(
exp

( 1
|Q|

∫
Q

log f (x)v1/p(x) dx
))q(

exp
( 1
|Q|

∫
Q

log v−1/p(x) dx
))q

= |Q|qα/n
(
exp

( 1
|Q|

∫
Q

log f p(x)v(x) dx
))q/p(

exp
( 1
|Q|

∫
Q

log v(x) dx
))−q/p

≤ |Q|qα/n
( 1
|Q|

∫
Q

f p(x)v(x) dx
)q/p(

exp
( 1
|Q|

∫
Q

log v(x) dx
))−q/p

.

Multiplying now both sides by
∫

Q
u(x) dx and taking into account our hypothesis, we

get the desired inequality. �

We are now ready to prove the main theorem of this section, concerning the weak
boundedness of the geometric fractional maximal operator Gα.
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T 3.3. Let α ∈ [0, n) and 0 < p ≤ q <∞. Suppose that u is a doubling weight.
Then the inequality ∫

{Gα f>λ}
u(x) dx ≤Cλ−q

(∫
Rn

f p(x)v(x) dx
)q/p

(3.1)

holds, for any measurable function f ∈ Lp(v) and any λ > 0, if and only if∫
Q

u(y) dy ≤C
(
|Q|1−αp/n exp

( 1
|Q|

∫
Q

log v(x) dx
))q/p

, (3.2)

for any cube Q ⊂ Rn, with sides parallel to the coordinate axes.

P. We prove first the sufficiency of (3.1) for (3.2). By the monotone convergence
theorem it is enough to prove (3.1) for bounded functions with compact support.
Without loss of generality we may also assume that v has a positive lower bound (see,
for example, [9]). We assume that supp f ⊂ B(0, R), R > 0. For bounded functions
with compact support the fractional maximal function satisfies

Mα f (x) ≈ |x|α−n for |x| > R.

Hence the set {x : Mα f (x) > λ} is bounded for a fixed λ. Since Gα f (x) ≤ Mα f (x), the
set

Eλ := {x : Gα f (x) > λ}

is bounded. By the definition of the geometric fractional maximal operator, for each
x ∈ Eλ there exists a cube Qx which contains x and such that

|Qx|
α/n exp

( 1
|Qx|

∫
Qx

log f (t) dt
)
> λ.

Obviously Eλ ⊂
⋃

x Qx. By the arithmetic mean-geometric mean inequality,

|Qx|
α/n 1
|Qx|

∫
Qx

f (t) dt ≥ |Q|α/n exp
( 1
|Qx|

∫
Qx

log f (t) dt
)
> λ

and thus supx |Qx| < λ
n/α−nRn/n−α <∞, that is, the cubes {Qx}x have bounded size.

By Lemma 3.1 we can choose a disjoint subsequence Q1, Q2, Q3, . . . such that Eλ ⊂⋃
j∈N 5Q j. Hence by (3.2), Lemma 3.2 and the assumption on u,∫
{x:Gα f (x)>λ}

u(x) dx ≤
∫

⋃
j∈N 5Q j

u(x) dx ≤
∑
j∈N

∫
Q j

u(x) dx

≤ C
∑
j∈N

(
|Q j|

α/n exp
( 1
|Q j|

∫
Q j

log f (x) dx
))−q(∫

Q j

f p(x)v(x) dx
)q/p

< C
∑
j∈N

λ−q
(∫

Q j

f p(x)v(x)
)q/p

≤ Cqλ−q
(∑

j∈N

∫
Q j

f p(x)v(x) dx
)q/p

≤Cλ−q
(∫
Rn

f p(x)v(x) dx
)q/p

,
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since q/p ≥ 1 and the cubes Q j are disjoint. By a classical limiting argument, the
inequality above holds for all f ∈ Lp(v). This proves the first part of the theorem.

Conversely, for a fixed cube Q, take

λ =
1
2
|Q|α/n

(
exp

( 1
|Q|

∫
Q

log v(x) dx
))−1/p

and f (x) = χQ(x)v−1/p(x). Then

Gα(χQv−1/p)(x) ≥ |Q|α/n
(
exp

( 1
|Q|

∫
Q

log v(x) dx
))−1/p

> λ

for all x ∈ Q, and hence Q ⊂ {x : Gα(χQv−1/p)(x) > λ}. Consequently, we can
derive (3.2) from (3.1), and the proof of the theorem is complete. �

In the following corollary we prove the diagonal case.

C 3.4. Let p > 0. The inequality∫
{Gα f>λ}

v(x) dx ≤Cλ−p
(∫
Rn

f p(x)v(x) dx
)

holds, for any measurable function f ∈ Lp(v) and for any λ > 0, if and only if v belongs
to A∞.

P. Take p = q, α = 0 and u = v in Theorem 3.3. Since any weight from the class
A∞ is doubling, the a priori condition of Theorem 3.3 is automatically satisfied. The
reversed part of the corollary is trivial, and the proof is complete. �

R 3.5. A consequence of the two corollaries is the known fact that the weak
and strong cases for the geometrical maximal operator are equivalent (see for
example, [9]). If n = 1, p = q, α = 0 we get [9, Theorem 2]. If n = 1 we obtain [3,
Theorem 2]. If n > 1, p = q, α = 0 we get [1, Theorem 1.4]. The above theorem
generalises these results to a larger range of parameters, without assuming extra
doubling conditions on weights. Thus our theorem answers some open questions
raised in [1].

R 3.6. As shown in [9, Section 6] there exist u, v satisfying the strong
condition (2.4) but not the weak condition (3.1). By the Lebesgue differentiation
theorem, if 1/p − 1/q − α/n > 0, inequalities (3.2) and (2.3) cannot hold unless u ≡ 0
a.e. Thus the only interesting case is when 1/p − 1/q − α/n ≤ 0. For α = 0, this
restricts to p = q.
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